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Abstract—The thermal laminar boundary layer on a continuous isothermal cylinder for Pr 2 1 has been

investigated by approximate Karman-Pohlhausen integral technique and exactly for small values of the

curvature parameter X. From the comparison of both solutions the error of the approximate method has
been estimated.

NOMENCLATURE
a, thermal diffusivity;
a,, a,,a3, coefficients in series
expansion (37);
A, parameter in boundary-layer velocity
profile, equation (7);
B, parameter in boundary-layer

temperature profile, equation (14);
¢ specific heat;
f(&,n), dimensionless stream function,
equation (21);
g(&,n), dimensionless temperature,
equation (22);
h,h,,  radial coordinate of the outer edge
of the momentum and thermal boundary
layers, respectively;
k, thermal conductivity;
Nug, Nug, local and average Nusselt
number, equations (14) and (41),
respectively;
Prandtl number, Pr = v/a;
rate of heat transfer per unit area ;
r, radial coordinate originating on
the axis of the cylinder;
radius of the cylinder;
t, temperature of the fluid;

g surface temperature of the cylinder;

to, ambient temperature of the fluid;

u, axial fluid velocity component ;

Ug, speed of the cylinder;

v, radial fluid velocity component ;

X, axial coordinate;

X, curvature parameter, equation (11).

Greek symbols

7, transformed r-coordinate, equation
(20);

i, dynamic viscosity ;

v, kinematic viscosity ;

¢, transformed x-coordinate, equations
(19)and (11);

v, stream function, equation (18).
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1. INTRODUCTION

THE THERMAL laminar boundary layer on a con-
tinuous cylinder travelling through quiet ambient fluid
is both of practical and theoretical interest and has
been investigated by several authors.

The solution of thermal boundary-layer equations
on a continuous cylinder for Pr < 1 has been obtained
by the approximate Karman—Pohlhausen integral
technique by Pecho€ [1] and Bourne and Ellistone [ 2],
for Pr 2 1 by Rotte and Beek [3]; an exact solution for
the continuous flat sheet and for the continuous
cylinder has been presented by Tsou et al. [4] and
Gampert [ 5, 6] respectively.

The object of the present paper is to give a general
solution of the boundary-layer equations on a con-
tinuous cylinder for Prz1 both by the
Karman—Pohlhausen method and exactly for small
values of the curvature parameter X, making thus the
error estimation of the approximate method possible.
Simultaneously, the previous published solutions are
given precision.

2. FORMULATION OF THE PROBLEM

The laminar boundary layer on a continuous cylin-
der with constant radius R, velocity uy, and tempera-
ture tp, that moves axially through a stationary
incompressible fluid with constant physical properties
and temperature t,, neglecting free convection and
viscous dissipation, may be described by momentum,
energy and continuity equations:

ou  Ou u 10y
"a*”fV(Er?*:a) @
ot o &t 1ot
ua+v5=a<ﬁ+;5) @)
rﬁ_u+6(vr) —0 3)
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with the boundary conditions
r=R: u=ug;, v=0; t=1,4 4)
¥ = o0 or
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x=0,r>R:

1=1y:

u=r=0; cu/or=10:
oA (3)
cticr =10

where x and r are coordinates along the axis of the
cylinder and perpendicular to it, u and v are velocity
components in the direction of x and r respectively,
t(x. r)-—temperature of the fluid in the boundary layer.

2.1. Approximate solution
Solution of the momentum boundary-layer equa-
tion (1) by Karman-Pohlhausen technique has been
obtained by several authors [1,2,7] by using the
logarithmic velocity profile
uug =1—(1/A)In(r/R)
for r<h: wugp=0"forr=h (6)
with dimensionless parameter 4 defined as
1’4 = — (Riug)(éu/Or) g (7)
and
h = Rexp(A) (&)
is the coordinate of the outer edge of the momentum
boundary layer. For the parameter A the differential
equation
dA/dX = 24%/[(A-1)expA)+ A +1] (9

has been obtained, the solution of which gives [§]

X = Z 274" i+ Di(n+2)!

n=1

(10)

where the curvature parameter X is defined as
X = vx/ugR-.
Integrating the energy equation (2) combined with the
continuity equation (3) we obtain an integral equation
d ™oL

WVJ ult —to)rdr = —aR[é(t—to)/0r] . (12)
dx Jg

For the solution of this equation a logarithmic tem-
perature profile has been used [ 1. 2]

(11)

[—1g

= =1—(;B)In{/R)yfor r <h, (13a)
tg—1y
and
[—1g
e = =0 for rzh, (13b)
lp—1y

where the dimensionless parameter B is defined as
1/B = —R[a(t —t)/ér] g/ltg—1to)

= 'kt —to) = Nu, (14)

and

h, = Rexp(B) (15)

is the coordinate of the outer edge of the thermal
boundary layer.

The solution of the equation (12) depends on the
value of Pr. For Pr < 1, the momentum boundary
layer is thinner than the thermaj boundary layer and it
follows from (6) that the integration of equation (12)
must be finished at the coordinate h. For Pr > 1 the
thermal boundary layer is thinner and the integration
must proceed only to the coordinate ..

Let us generally define the outer coordinate m of the
boundary layer as
m = Rexp(K}

where K =4 for Pr<1. K =8 for Prz1 and
evidently K =4 = B for Pr=1. Substituting the
velocity profile (6) and the temperature profile (13)in
the equation (12), integrating und eliminating the
curvature parameter X with the help of (9) we obtain
the differential equation

dB BiA

dA  PKQAK —A—2K 42K — 11+ A +1

(16}

(2

~¢**2BK ~B-2K*+2Kk —~1) - B—1}

{

{17)

that presents a general solution of thermal boundary
layer for any Pr.
2.2, Exact solution
The familiar transformation, ie. introducing the
stream function i as
Njix = —ru; (18}

the dimensionless coordinates ¢ and # to replace x and
ras

SY/ir = ru

(19)
(20)

f=4x)

N = {ug/vx) 2 (r" — R*)/4R
the dimensionless function f{¢, i) instead of the stream
function i as

F(E )=/ lvxug R
and the dimensionless function ¢(&, ) instead of the

temperature f
(t—1o)ltg—to) = gi&in)

(21

(22)

into the equations (1 )-(3) yields two partial differential
equations

(1 +§n>(:ij; l+./' (:_",3

n cn’ cn
lererf o &
+& ;/2— — - f =0 (23
G on? Onoéon
1 Flg(l B g 1
— + ‘:, }+ ~ - _
Pr én- R cn Pr
g éfcg of dg _
+f ;‘{‘F 4:‘: ;‘{ - ﬁ] =0 24
cH ccadn oncg

where a simplified notation f and ¢ is used for the
functions f (€, n) and g(&, ) respectively.
The boundary conditions in the new coordinates are

F(EO0Y=0: (@f/an),.o=2: g(&.0)=1 (25
(@fjenly .. =0 gl&om,., =0 (26)

In region of small values of ¢ one can use power
expansion for the functions f (£, ) and g(&, n):

fEm =y &fim 127)
i=0
gl&m =3y gin).

i=0

(28)
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Taking only three terms of these series which converge
rapidly for small ¢ and substituting them into (23) and
(24), asystem of ordinary differential equations results:

o +fofo =0 (29)

VS =S N2 [ +ufs’ + 15 =0 (30)
2ol =2 S 435S

+afl"+ I L+2) - (f)? =0 (31)

go+Pr-fogo=0 (32)

g1+ Pr(fog) —Jog1 +2f195) +90+ng95 = 0 (33)
g5+ Pr(fod>—2f09.+2f 14}

—f191+3290)+ g, +ngi =0 (34)
with boundary conditions
n=0: fo=2; fp=0; go=1
ff=0; fi=0; g, =0fori>0 (35)
now: ff=0; g=0. (36)

3. NUMERICAL SOLUTION AND RESULTS

3.1. Solution of the equation (17)

The only known point A = B = 0 does not allow the
solution of (17), as the expression for dB/dA is of an
indetermined form. Therefore, a power series expan-
sion

B=a,A+a,A*+as 4>+ ... (37)

was used to obtain the starting point for numerical
integration. By substituting this series in (17) and
comparing coefficients of the identical powers of A the
equations for computation of g; are found (Appen-
dix 1). The values of a; and the values of B, calculated
for A =001 from (37), are summarized in Table 1.

Table 1. The coefficients g, in series expansion (37)

Pr a, a, a, B

0.7 1.285714 —0.075630  0.004818 0.012850
1 1 0 0 0.01

10 0.270701 0.063478  0.010745 0.002713

Table 2. Values of Nuy = 1/B

Nug
log X A Pr=07 Pr=1 Pr=10
=5 00077260  100.72 129.43 477.27
—4.5 0013712 56.767 72929  268.52
-4 0.024297 32.057 41.157 151.17
—3.5 0042937 18.160 23.290 85.171
-3 0075517 10.345 13242 48.056
-25 013174 5.9497 75909  27.183
-2 022666 34771 44118 15445
—15 038137 2.0849 2.6221 8.8437
—1 0.62020 1.2992 1.6124 5.1303
~0.5 096210 0.85281 1.0394 3.040t
0 1.4088 0.59518 0.70983 1.8611
0.5 1.9408 0.44192 0.51525 1.1923
1 2.5278 0.34648 0.39559 0.80773
1.5 3.1430 0.28369 031816  0.58078
2 37692 0.24005 0.26531 0.44141
2.5 43975 0.20819 022740  0.35151
3 5.0239 0.18397 0.19905 0.29045
35 56473 0.16494 0.17708 0.24695
4 62672 0.14958 0.15956  0.21464
45 6.8839 0.13691 0.14527  0.18979
5 74976 0.12627 013338  0.17012
55 81087 0.11721 012332 0.15418
6 87174 0.10940 0.11471 0.14100

Starting at these points, the differential equation (17)
was then integrated by the fourth order Runge—Kutta
method with the help of the calculator HP 9100. The
calculated values of B for various values of X, for
which the values of A were determined from (10), are
displayed in Table 2. The values of Bfor A < 0.01 have
been obtained directly from (37).

The values of Nug for Pr = 1,1.e. when A = B, have
been published already [2] and are displayed for
completeness and comparison only.

3.2. Solution of equations (29)-(34)
Equations (29)-(34) have been solved by the Taylor
expansion in the form

4 k. (k+m)

iy =y Pha T 68)
k=0 .

where the exponent in brackets means the order of the

derivative for y = f(5) and g(n). The value of m is m

=0-2and m = 0 and 1 for f(n) and g(n), respectively.

The step of integration h = 0.01 and p = 5 was used for
the numerical calculation. The higher derivatives of f;
and g; are defined with the help of (29)-(34) and
substituted in (38), so that the values of f; and g; in the
step (n+ 1) are given only by the values of the function,
its first derivative and for f; its second derivative, too, in
the step n. The values of £;, /' and g, for n = O are known
from the boundary condition (35). The values £,”(0)
and g;(0) have been approximated by trial and error so
as to satisfy to a maximum accuracy possible with the
used calculator HP 9100 the boundary condition (36).
The accuracy of the solution was tested by repeated
calculation with the integration step halved.

The approximated values of £;(0) and the values of
fi f and f” for n < 18.4 have been published in
previous work [8]. The values of g;(0) for various
values of Pr are displayed in Table 3. The maximum
error, A, of the calculated values of g,(0)is A

=5 10:" 9.%

From the definition of the local rate of heat transfer

per unit area of the cylinder surface

_ o(t—1,)
== k( or ,]R

using equations (19), (22), (28) and rearranging we
obtain for the local Nusselt number
2

(39)

NupX'? = — % 22i-1xi2 0 (40)
i=0
The equation for average Nusselt number Nu
J— 1 X
NuR:EL NupdX @n

*Detailed tables of g™ for 0 < i < 2, the order of derivative
m = 0and 1, and for n < 21 have been displayed in the report
[9] and will be made available upon request by the authors.
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Table 3. Approximated values of ¢;(0)

2(0)
1 Pr =07 Pr=1 Pr =10
0 —0.69847170 —0.88749662 —3.36058656
1 —0.1823863 —0.1900993 —0.2013562
2 0.009027 0.009270 0.001843
becomes by substituting equation (40)
NugX'? = = ¥ 2o X¥2g10), 42)
icoi+l

Using the values ¢i(0) from Table 3 with the
equations (40) and (42), we obtain equations for the
calculation of the local and average Nusselt numbers.
In view of the used expansion the applicability of these
equations is restricted to X < 0.06 for Pr=0.7, X
<0.07 for Pr =1 and X < 1.4 for Pr = 10, when the
value of the third term of the series is approximately
5% of the second term and 1%, of the sum of first and
second term.

Table 4. Values of Nug X '* for smail X

The approximate solution of the thermal laminar
boundary layer on a continuous cylinder for Pr < 1 by
Rotte and Beek [3] starts from their equations (4a)
and (4b) but the last term on the left side of the
cquation {4a)for Pr = 1 has an incorrect negative sign.
As there have been provided no numerical results of
the solution of these equations in the paper. it is
difficult to check the solution only from the plots of
various combinations of dimensionless groups pub-
lished there.

5. CONCLUSION

The demonstrated solution of the thermal boundary
layer on a continuous cylinder enables to obtain the
local and average Nusselt numbers for Pr £ 1. By
comparison with an exact solution for small values of
X. the estimation of the error of the approximate
Karman--Pohlhausen solution has been made pos-
sible. The values of Nu,X%% obtained both by the
approximate and exact solutions {equations (17) and
(40)] have been displayed in Table 4. As it is evident,
the approximate solution underestimates the rate of

Pr= 1 Pr=10

Pr =07
X NugX'? A% Nug X'~ A Nig X A
(17) (40) (17) 40) (171 40)
0.0001 0.32057 0.35288 -92 0.41157 0.44754 -8.0 1.51151 1.68432 —10.3
0.0005 0.32433 0.35736 -92 0.41568 0.45221 ~8.1 1.51635 1.68929 ~10.2
0.001 0.32714 0.36070 -9.3 041875 0.45570 —8.1 1.51959 1.69301 —10.2
0.005 0.33893 0.37467 —9.5 0.43162 0.47026 -8.2 1.53385 1.70870 ~102
0.01 0.34771 0.38499 -9.7 0.44118 0.48103 - 8.3 1.54464 1.72042 - 10.2
0.04 0.37725 0.41930 —10.0 047336 0.51682 —8.4 1.58065 1.76025 - 10.2
0.05 0.38414 042719 —10.1 0.48085 0.52506 -84 1.58913 1.76960 10.2
0.06 0.39034 0.43425 —10.1 0.48759 0.53243 -84 1.59680 1.77805 -10.2
0.07 0.49376 0.53915 ~8.4 1.60387 1.78581 - 102
0.1 1.62235 1.80617 - 10.2
0.5 1.76018 1.95768 —10.1
1 1.86109 2.06826 ~10.0
14 213615 ~10.0

4. COMPARISON WITH PREVIOUS RESULTS

Tsou er al. [4] have published the results of an exact
solution of heat transfer through boundary layer on a
continuous flat sheet in terms of Nu,/(Re Pr)'2.
Multiplying these values by 2Pr®- (with respect to the
substitution used), we obtain results which differ in one
unity on the fourth place from the values of g5(0) in
Table 3.

The values of gi(0) for Pr=0.7 published by
Gampert |5, 6] are go(0) = —0.698583; g/ (0) =
—0.184626; g, (0) = —0.0226193. The mistakes in the
second and third equation in the equation system
(1.19)[5] and (6)[ 6] (omission of the multiplication of
f¢in the second and f{” in the third equation by n) are
obviously due to misprint. Nevertheless, it is evident
from the published values of the functions f; and g;
[5,6] that the fulfilment of the boundary condition
(36) is strictly imposed for # = 8 (an abrupt change of
values). From the values of g;(8) it follows that the
error of gj(0) is of the order 10°"*for i =0, 1, 2.

1.92323

heat transfer (Nusselt number) by 8§-10%; in the range
of Pr and X displayed in the table. Similarly as at the
momentum boundary layer [8], the error has for Pr
< 1 a slightly increasing trend with increasing X, and
only for Pr= 10 the expected (and supposed by
Bourne and Elliston [2]) slight decrease of the error
with increasing X has been obtained.

For practical calculations, it can be supposed that
the approximate solution underestimates Nusselt
number by approximately 10, in the whole range of
X, what coincides with recent results of Gampert [5].
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APPENDIX 1

The coefficients a,, a, and a; for Pr < 1,ie. when K = A4,
have been obtained by power series expansion by Bourne and
Elliston [2]. For Pr = 1 is K = B and we obtain from (17):

ad—3a3+2Pr 1 =0 43)
a, = a,(—2a?+5a,—3)/(5a,-9) 44)
ay = [5a3(7a, —6)+ 5a}a,(11a, — 16)
+3a?(a, —1)(3a? ~2a, - 3)]/5a,(12=Ta,). (45)
Equation (43) has three real roots. The right root can be

chosen from the condition 0 < a, €1 as0 < B < A4 for Pr
> 1 and is defined by equation

a =1—2cos<n:q’> (46)

with
cosp=1—1/Pr. 47)

COUCHE LIMITE THERMIQUE LAMINAIRE SUR UN CYLINDRE CONTINU

Résumé— La couche limite thermique laminaire sur un cylindre isotherme pour Pr > 1 a ét¢ étudiée de fagon
approchée par la technique de Karman—-Polhausen et de fagon exacte pour les petites valeurs du parameétre
de courbure X. Par comparaison des deux solutions, on a estimé I'erreur sur la méthode approchée.

DIE LAMINARE THERMISCHE GRENZSCHICHT AN EINEM
UNENDLICH AUSGEDEHNTEN ZYLINDER

Zusammenfassung—Fiir einen unendlich ausgedehnten, isothermen Zylinder wurde die laminare

thermische Grenzschicht fiir Pr 2 1 ndherungsweise mit Hilfe der Karman-Pohlhausen-Integraltechnik

gelost. Fiir kleine Kriimmungsparameter X wird eine exakte Losung angegeben. Durch Vergleich
beider Losungen kann der Fehler der Niherungsldsung abgeschiitzt werden.

TEMITEPATYPHBIA JIAMUHAPHBIA NOFPAHUYHLIA CJIOW HA
HEOI'PAHUYEHHOM LIMWJIMHAPE

Annoranng — TeMnepaTypHblil NaMHHAPHBIH MOrpaHUYHbIA COH HAa HEOTPAaHHUYEHHOM H30TEPMHM-

4eCKOM UHNMHIpe npd Pr $ 1 paccuntbiBaeTcs NPHONHKEHHO MHTErpajibHbIM MeTonoM Kapmana-

TMonbrayseHa M TOYHO i HeGONBIIMX 3HAYEHMIt mapamMeTpa kpuBHM3Hbl X. M3 cpaBHeHus o6oux
pereHuit oLeHeHa NOrPeilHOCTh NPHOMMIKEHHOTO MeToa.



