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Abstract -The thermal laminar boundary layer on a continuous isothermal cylinder for Pr <> 1 has been 
investigated by approximate K~irmfin-Pohlhausen integral technique and exactly for small values of the 
curvature parameter X. From the comparison of both solutions the error of the approximate method has 

been estimated. 

N O M E N C L A T U R E  

a, thermal diffusivity; 
ax, a2, a3, coefficients in series 

expansion (37); 
A, parameter in boundary-layer velocity 

profile, equation (7); 
B, parameter in boundary-layer 

temperature profile, equation (14); 
c, specific heat ; 
f(~, r/), dimensionless stream function, 

equation (21); 
9(~, r/), dimensionless temperature, 

equation (22); 
h, hi, radial coordinate of the outer edge 

of the momentum and thermal boundary 
layers, respectively; 

k, thermal conductivity; 
NuR, NuR, local and average Nusselt 

number, equations (14) and (41), 
respectively; 

Pr, Prandtl number, Pr = v/a ; 
q~, rate of heat transfer per unit area; 
r, radial coordinate originating on 

the axis of the cylinder; 
R, radius of the cylinder ; 
t, temperature of the fluid; 
ts, surface temperature of the cylinder; 
to, ambient temperature of the fluid; 
u, axial fluid velocity component; 
u R, speed of the cylinder; 
v, radial fluid velocity component; 
x, axial coordinate; 
X, curvature parameter, equation (11). 

Greek symbols 

t/, transformed r-coordinate, equation 
(20); 

/~, dynamic viscosity; 
v, kinematic viscosity; 
~, transformed x-coordinate, equations 

(19) and (11); 
~,, stream function, equation (18). 
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1. I N T R O D U C T I O N  

THE THERMAL laminar boundary layer on a con- 
tinuous cylinder travelling through quiet ambient fluid 
is both of practical and theoretical interest and has 
been investigated by several authors. 

The solution of thermal boundary-layer equations 
on a continuous cylinder for Pr ~< 1 has been obtained 
by the approximate K/trmfin-Pohlhausen integral 
technique by Pechoe [-1] and Bourne and Ellistone [2], 
for Pr <> I by Rotte and Beek [3] ; an exact solution for 
the continuous fiat sheet and for the continuous 
cylinder has been presented by Tsou et al. [-4] and 
Gampert [5, 6] respectively. 

The object of the present paper is to give a general 
solution of the boundary-layer equations on a con- 
tinuous cylinder for Pr <> I both by the 
Karman-Pohlhausen method and exactly for small 
values of the curvature parameter X, making thus the 
error estimation of the approximate method possible. 
Simultaneously, the previous published solutions are 
given precision. 

2. F O R M U L A T I O N  O F  T H E  P R O B L E M  

The laminar boundary layer on a continuous cylin- 
der with constant radius R, velocity uR and tempera- 
ture tR, that moves axially through a stationary 
incompressible fluid with constant physical properties 
and temperature to, neglecting free convection and 
viscous dissipation, may be described by momentum, 
energy and continuity equations: 

U ~ x + V ~ r  = v~-r2 + r  ~rr / (1) 

Ot Ot [c~2t 1 Ot 
U~x+ V~r r = a ~ r 2  +r~rr  ) t2) 

~u ~(vr) 
r - - +  = 0 (3) 

c~x & 

with the boundary conditions 
r = R :  u = u R ;  v = 0 ;  t = t  R (4) 

r - -+  90 o r  
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x=O, r > R :  u = z : = 0 :  ?u/Or=O:  
(5) 

t - t o :  ?t /~ 'r=O 

where x and r are coordinates along the axis of the 
cylinder and perpendicular to it, u and v are velocity 
components in the direction of x and r respectively, 
t(x, r) -temperature of the fluid in the boundary layer. 

2.l. Approximate solution 
Solution of the momentum boundary-layer equa- 

tion (1) by Karman Pohlhausen technique has been 
obtained by several authors [1 ,2 ,7]  by using the 
logarithmic velocity profile 

u/u R = 1 - ( l / A ) l n ( r / R )  

for r~<h;  u/u R = O  for r~>h {6) 

with dimensionless parameter A defined as 

1 A -  (R/uR)(Ntc?r)R (7) 

and 

h - R exp(A) {8) 

is the coordinate of the outer edge of the momentum 
boundary  layer. For the parameter A the differential 
equation 

d A / d X = 2 A 2 / [ ( A - 1 l e x p ( 2 A ) + A + I ]  (9) 

has been obtained, the solution of which gives [8] 

X =  ~" 2 " A " ~ n / ( n + t ) ( n + 2 ) !  (10) 
n 1 

where the curvature parameter X is defined as 

X --  VX, l t ~ R  2. (1 1) 

integrating the energy equation (2} combined with the 
continuity equation (3) we obtain an integral equation 

d f '  cii~ e u ( t - t ° ) I ' d '  . . . .  aR[F:It--tot/?r]R. {12) 

For the solution of this equation a logarithmic tem- 
perature profile has been used [1, 2] 

t l o 
- 1 - ( l / B ) l n ( r / R j f o r r < ~ h ,  [13a) 

I R - - I  0 

and 

t - t °  -- 0 for r >~ h, (13b} 
I R - -  t o  

where the dimensionless parameter B is defined as 

1 / B  = - R [~  (t - t o )/~r] R/( t  e - to ) 

= q u / k ( t u - t o ) =  Nut,. (14) 

and 
h t = Rexp(Bt (15) 

is the coordinate of the outer edge of the thermal 
boundary layer• 

The solution of the equation (12) depends on the 
value of Pr. For Pr < 1, the momentum boundary 
layer is thinner than the thermal boundary layer and it 
follows from (6) that the integration of equation (12) 
must be finished at the coordinate h. For Pr > 1 the 
thermal boundary layer is thinner and the integration 
must proceed only to the coordinate h t. 
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Let us generally define the outer coordinate m of the 
boundary layer as 

m = R e x p I g  } t[6i 

where K = A  for Pr <~1. K = B for Pr;,> I and 
evidently K = A = B for P r =  1. Substituting the 
velocity profile (6) and the temperature profile ( 13 ) in 
the equation (12), integrating and eliminating the 
curvature parameter X with the help of (9 t we obtain 
the differential equation 

dB B:A 

d A - c e K Q A K - - A - - 2 K a + 2 K  1 !4 -A+l  

i2 
× tPr [e2AtA--II+A+I] 

--1} B- - I f ,  t17) ~ ~ 2 K ~ 2 B K ~ B ~ ~ K 2 @ 2 ~ 

that presents a general solution of thermal boundary 
layer for any Pr. 

2.2. Exact solution 
The familiar transformatiom i.e. introducing the 

stream function ~p as 

?~/(~x = - r v :  ~ i ? r -  ru (18t 

the dimensionless coordinates ~ and r/to replace x and 
F a s  

,~ = 4(X) 1-' {19) 

tl = tua/'vx )1;2 tr e _ R 2 I/4R { 20} 

the dimensionless func t ion /Q,  ~l)instead of the stream 
function i/J as 

1'(~, II} = ~ I ( V X U R R 2 )  ~ 2 i21! 

and the dimensionless function g/d", q) instead of the 
temperature t 

( t - - t o ) / ( t R - - t O )  == ~]l~, Ill (22) 

into the equations (1) (3) yields two partial differential 
equations 

(I . (,2f ] ., ~2.1 

I 

[ iPf & f  ~/  ¢92/ 
+ ~ /  : ' 2 -  ' " I = 0  (23) 

dg 1 
1 ~?-'g (1 +¢~1i+¢ 

Pr ~tl 2 ¢'~q Pr 

- '-  : . . . . . .  0 124) + t '~ + F'I• cy ,?l ,~y • c,7 * | ~ e @  #'I#¢ 

where a simplified notation f and g is used for the 
functions f G  r/) and g(d, II) respectively. 

The boundary  conditions in the new coordinates are 

/ •Q,0t=0;  (~f/&t),,=o=2 g(4,o)= I 125) 

(~l/?~l),, .... = 0; g{~, i l l , , . ,  = 0. (26) 

In region of small values of ~ one can use power 
expansion for the functions/(~,  q) and 9 (4, ~1): 

.1(~, rl) = ~ ~/i(~/l 127) 
i: 0 

L 4 i y i ( l l ) .  ,qQ,~)  = 12si 
i :0 
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Taking only three terms of these series which converge 
rapidly for small ~ and substituting them into (23) and 
(24), a system of ordinary differential equations results: 

fd"+fofd '  = 0 (29) logX A 

f ; " + f o f l " - f ~ f ; + 2 f ~ ' f ~ + r l f ~ " + f ~ ' = O  (30) - 5  0.0077260 

fj , ,  + fof j ,  ZfOj~ + 3f~,f2 -4.5 0.013712 
- 4 0.024297 

+ r l f [ " + f l " ( l + 2 f l ) - ( f [ ) 2 = O  (31) -3.5 0.042937 

9~+Pr ' fog '  o = 0 (32) - 3  0.075517 
-2.5 0.13174 

g~+Pr(fog', - f o g ,  +2f~g'o)+g'o+qg'~ = 0 (33) - 2  0.22666 
-1.5 0.38137 

9'~+er(fog'z-2f~92+2ft9 ' ,  - 1  0.62020 
--f~y,+3f2g'o)+g'l+rl#'~=O (34) -0.5 0.96210 

0 1.4088 
with boundary conditions 0.5 1.9408 

1 2.5278 
q = 0: f~ = 2; fo = 0; 90 = 1 1.5 3.1430 

f '  = 0; f = 0; 9i = 0 for i > 0 (35) 2 3.7692 
2.5 4.3975 

r/--, ~ : f '  = 0; 9~ = 0. (36) 3 5.0239 
3.5 5.6473 

3. NUMERICAL SOLUTION AND RESULTS 4 6.2672 

3.1. Solution of the equation (17) 4.5 6.8839 
5 7.4976 

The only known point A = B -- 0 does not allow the 5.5 8.1087 
solution of (17), as the expression for dB/dA is of an 6 8.7174 
indetermined form. Therefore, a power series expan- 
sion 

B = a l A + a 2 A 2 + a 3 A  3 + . . .  (37) 

was used to obtain the starting point for numerical 
integration. By substituting this series in (17) and 
comparing coefficients of the identical powers of A the 
equations for computat ion of a~ are found (Appen- 
dix 1 ). The values of a i and the values of B, calculated 
for A = 0.01 from (37), are summarized in Table 1. 

Table 1. The coe~cients aiin series expansion (37) 

Pr al a2 a 3 B 

0.7 1.285714 -0.075630 0.004818 0.012850 
1 1 0 0 0.0l 

l0 0 .270701 0 .063478  0.010745 0.002713 

Starting at these points, the differential equation (17) 
was then integrated by the fourth order Runge-Kut ta  
method with the help of the calculator HP  9100. The 
calculated values of B for various values of X, for 
which the values of A were determined from (10), are 
displayed in Table 2. The values of B for A < 0.01 have 
been obtained directly from (37). 

The values o f N u  R for Pr = 1, i.e. when A = B, have 
been published already [2] and are displayed for 
completeness and comparison only. 

3.2. Solution of equations (29)-(34) 
Equations (29)-(34) have been solved by the Taylor 

expansion in the form 

hkv(k  + m) 
~l(m) Ji,n 
Y i ,n+l  = (38) 

k=o k! 

where the exponent in brackets means the order of the 
derivative for y = f(r/)  and 9(r/). The value of m is m 
= 0-2  and m = 0 and 1 fo r f (q )  and 9(rl), respectively. 

Table 2. Values of Nu R = lIB 
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Nu R 

Pr=0.7 P r = l  Pr=lO 

100.72 129.43 477.27 
56.767 72.929 268.52 
32.057 41.157 151.17 
18.160 23.290 85.171 
10.345 13.242 48.056 
5.9497 7.5909 27.183 
3.4771 4.4118 15.445 
2.0849 2.6221 8.8437 
1.2992 1.6124 5.1303 
0.85281 1.0394 3.0401 
0.59518 0 . 7 0 9 8 3  1.8611 
0.44192 0 . 5 1 5 2 5  1.1923 
0.34648 0 . 3 9 5 5 9  0.80773 
0.28369 0 . 3 1 8 1 6  0.58078 
0.24005 0 . 2 6 5 3 1  0.44141 
0.20819 0 . 2 2 7 4 0  0.35151 
0.18397 0 . 1 9 9 0 5  0.29045 
0.16494 0 . 1 7 7 0 8  0.24695 
0.14958 0 . 1 5 9 5 6  0.21464 
0.13691 0 . 1 4 5 2 7  0.18979 
0.12627 0 . 1 3 3 3 8  0.17012 
0.11721 0 . 1 2 3 3 2  0.15418 
0.10940 0 . 1 1 4 7 1  0.14100 

The step of integration h = 0.01 and p = 5 was used for 
the numerical calculation. The higher derivatives o f f  
and 9i are defined with the help of (29)-(34) and 
substituted in (38), so that the values off~ and gi in the 
step (n + 1) are given only by the values of the function, 
its first derivative and forfi its second derivative, too, in 
the step n. The values o f f , f '  and 9i for r / =  0 are known 
from the boundary condition (35). The values f/ '(0) 
and 9~(0) have been approximated by trial and error so 
as to satisfy to a maximum accuracy possible with the 
used calculator HP  9100 the boundary condition (36). 
The accuracy of the solution was tested by repeated 
calculation with the integration step halved. 

The approximated values of f" (0)  and the values of 
fi, f '  and fi" for q ~< 18.4 have been published in 
previous work [-8]. The values of 91(0) for various 
values of Pr are displayed in Table 3. The maximum 
error, A, of the calculated values of 9~(0) is A 
= 5 '  10 i-  9., 

F rom the definition of the local rate of heat transfer 
per unit area of the cylinder surface 

k[ It- 01] 
q" = -  I~TU-r j. (39) 

using equations (19), (22), (28) and rearranging we 
obtain for the local Nusselt number 

2 

Nun X1/2= - ~ 22i-lxi29~(0). (40) 
i = O  

The equation for average Nusselt number Nu R 

- lfo  Nun = ~ Nu n d X  (41) 

* Detailed tables ofg~ ") for 0 ~< i .G< 2, the order of derivative 
m = 0 and t, and for q ~< 21 have been displayed in the report 
[9] and will be made available upon request by the authors. 
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Table 3. Approximated values of g'i(O) 

g'~(o) 

i P r  = 0.7 Pr - I Pr 10 

0 -0.69847170 0.88749662 -3.36058656 
1 -0.1823863 0.1900993 -0.2013562 
2 0.009027 0.009270 0.001843 

becomes by subst i tut ing equat ion (40) 

_~ 22, 
~ l t R  x 1 2  = - - ~  x i "2g i (O} .  (421 

i ' - o i +  l 

Using the values gi(0) from Table 3 with the 
equat ions  (40) and  (42), we obtain equat ions for the 
calculat ion of the local and average Nussel t  numbers .  
In view of the used expansion the applicabili ty of these 
equat ions  is restricted to X ~< 0.06 for P r =  0.7, X 
~< 0.07 for Pr  = 1 and X ~< 1.4 for Pr  = 10, when the 
value of the third term of the series is approximately  
5}~ of the second term and 1°,,; of the sum of first and 
second term. 

x 

V, PECIIO( 

The approximate  solution of the thermal  laminar  
boundary  layer on a cont inuous  cylinder for Pr % 1 by 
Rotte and Beek [3] starts from their equat ions  (4a) 
and (4b) but  the last term on the left side of the 
equat ion (4at for Pr  ~ 1 has an incorrect negative sign. 
As there have been provided no numerical  results of 
the solution of these equat ions  in the paper, it is 
difficult to check the solution only f lom the plots of 
various combina t ions  of dimensionless groups pub- 
lished lhere 

5. CON(LUSION 

The demons t ra ted  solution of tlic thermal  bounda ry  
layer on a cont inuous  cylinder enables to obta in  the 
local and average Nusselt  numbers  h)r Pr ~ 1. By 
compar ison with an exact solution for small values of 
X, the est imation of the error  of the approximate  
Karman  Pohlhausen solution has been made pos. 
s ine.  l-he wtlues of Nu~eX ° s  obtained bo th  by the 
approximate  and exact solutions [equat ions  (I 7) and 
(40)] have been displayed in Table 4. As it is evident, 
the approximate  solution underest imates  the rate of 

Table 4. Values of NuRX ~: fl~r small X 

Pr - 0.7 Pr : 1 t'r = 10 

NIIR X 12 A,~t ' NblR X I 2 A ~ ° :%'HR ~ ! ,1 e~ 

(17) (40) I17) 1401 (17t t40) 

0.0001 0.32057 0.35288 -9.2 0.41157 0.44754 8.1) 1.51151 1.68432 10.3 
0.0005 0.32433 0.35736 -9.2  0.41568 0.45221 -8.1 1.51635 1.68929 - 10.2 
0.001 0.32714 0.36070 -9.3 0.41875 (I.45570 -8.1 1.5t959 1.6930l - 10.2 
0.005 0.33893 0.37467 -9.5 0.43162 0.47026 8,2 1.53385 1.70870 ~ 10.2 
0.01 0.34771 0.38499 - 9.7 0.44118 0.48103 - 8.3 1.54464 1.72042 1(/.2 
0.04 0.37725 0.41930 - 10 .0  0.47336 0.51682 8.4 1.58065 1.76025 -- 10.2 
0.05 0.38414 0.42719 - 10.1 0.48085 0.52506 8,4 1.58913 t.76960 10.2 
0.06 0.39034 0.43425 10.1 0.48759 0.53243 -8.4  1.59680 !.77805 -10.2 
0.07 0.49376 0.53915 8,4 1,60387 1.78581 10.2 
0.1 1,62235 1.80617 -10.2 
0.5 1.76018 /.95768 10.1 
1 1,86109 2.06826 I0.0 
1.4 1.92323 2.13615 10.0 

4. C O M P A R I S O N  WITH P R E V I O U S  RESULTS 

Tsou et al. [4] have published the results of an exact 
solution of heat  transfer th rough boundary  layer on a 
cont inuous  flat sheet in terms of N u x / ( R e ~ P r )  1~2. 

Multiplying these values by 2Pr  °5 (with respect to the 
subst i tu t ion used), we obta in  results which differ in one 
unity on the fourth place from the values of g;(0)  in 

Table  3. 
The values of gi(0) for Pr  = 0.7 published by 

G a m p e r t  [5, 6] are g; (0)  = -0 .698583 ; g'l (0) = 
- 0.184626 : 9~ (0) = - 0.0226193. The mistakes in t he 
second and  third equat ion  in the equat ion  system 
(1.19) [5] and  (6) [6] (omission of the mult ipl icat ion of 

f f f '  in the second a n d J i "  in the th i rd  equa t ion  by r/) are 
obviously due to misprint.  Nevertheless,  it is evident 
from the publ ished values of the functions Ji and g~ 
[5, 6] tha t  the fulfilment of the bounda ry  condi t ion 
(36) is strictly imposed for t I = 8 (an ab rup t  change of 
values). F r o m  the values of gi(8) it follows that  the 
error  of gi(0)is  of the order l 0  i ¢ for i = 0, 1, 2. 

heat transfer (Nusselt number  I by 8 -1()°.; in the range 
of Pr  and  X displayed in the table. Similarly as at the 
m o m e n t u m  bounda ry  layer [8], the error has for Pr 
~< 1 a slightly increasing trend with increasing X, and 
only for Pr  = 10 the expected (and supposed by 
Bourne  and Elliston [2])  slight decrease of the error 
with increasing X has been obtained.  

For  practical calculations, it can be supposed that  
the approximate  solution underest imates  Nussel t  
number  by approximately 103~, in the whole range of 
X ,  what  coincides with recent results of G a m p e r t  [5]. 
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APPENDIX 1 

The coefficients al, a 2 and a3 for Pr ~< 1, i.e. when K = A, 
have been obtained by power series expansion by Bourne and 
Elliston [2]. For Pr >I 1 is K = B and we obtain from (17): 

a31 - 3a 2 + 2Pr-  ~ = 0 (43) 

a 2 = a 1 ( - 2a~ + 5al - 3)/(5a, - 9) (44) 

a3 = [5a~(7a1-6)+  5a~a2(llal - 16) 
+ 3a2(al - 1 )(3a 2 - 2a 1 - 3)]/5a I (12 - 7al ). (45) 

Equation (43) has three real roots. The right root can be 
chosen from the condition 0 < ax -<.< 1 as 0 < B ~< A for Pr 
1> 1 and is defined by equation 

a l =  1 - 2 c o s  Ct ~-~-~ ) (46) 

with 
cos ~o = 1 - 1/Pr. (47) 

COUCHE LIMITE THERMIQUE LAMINAIRE SUR UN CYLINDRE CONTINU 

Resume-- La couche limite thermique laminaire sur un cylindre isotherme pour Pr > 1 a 6te 6tudi6e de faqon 
approch6e par la technique de Karman-Polhausen et de faqon exacte pour les petites valeurs du param6tre 

de courbure X. Par comparaison des deux solutions, on a estim6 rerreur sur la m6thode approch6e. 

DIE LAMINARE THERMISCHE GRENZSCHICHT AN EINEM 
UNENDLICH AUSGEDEHNTEN ZYLINDER 

Zusammenfasstmg--Fiir einen unendlich ausgedehnten, isothermen Zylinder wurde die laminare 
thermische Grenzschicht f'tir Pr >< 1 naherungsweise mit Hilfe der Karman-Pohlhausen-Integraltechnik 
gel~Sst. Fiir kleine Kriimmungsparameter X wird eine exakte LSsung angegeben. Durch Vergleich 

beider L6sungen kann der Fehler der N~iherungsl6sung abgesch~itzt werden. 

TEMHEPATYPHblITI  .qAMIdHAPHblIT1 FIOTPAHI/IqHblITI CflOITI HA 
H E O F P A H I d q E H H O M  I l I d f l H H ~ P E  

AtmoTaHH~- TeMnepaTypHblfi J]aMttnapttbl~ rloFpaHMqHbl~ CJ'lOl4 Ha HeorpaHHqenHOM H3oTepMH- 
'-IeCKOM Llll.rlttH)lpe npri Pr X 1 pacctn, lTbIBaeTc~ rlptt6.~t'l:~eHHO HHTerpaJlbHblM MeTOI1OM KapMaHa- 
1-lo¢~bray3eHa n TOqHO 2IJ'llq He6o~qbmr~x 3Ha'~eHHfi napaMeTpa KpHBIt3Hbl X. 1/13 cpaBHen~ O6OrlX 

petueHI~,~ oueHeHa I1oI-pewHOCTb npH6JlH~eHltOrO MeTO21a. 


